Engenharia do conhecimento – uma abordagem da interação BIM e *Lean*

https://doi.org/10.21814/uminho.ed.32.21

Thayane Rezek¹, Maria Freitas¹, Sérgio Scheer¹

¹ Universidade Federal do Paraná, Curitiba

Resumo

A construção civil enfrenta desafios induzidos pela informação fragmentada de fontes heterogêneas e autônomas. A adoção do modelo da informação da construção (BIM) traz melhorias ao projeto tornando o processo eficiente e mais produtivo, aumentando sua qualidade e gerando informações mais precisas, ao passo que a Lean Construction parte de princípios para redução de desperdícios com materiais e serviços desnecessários, também tornando o processo de produção mais eficiente e produtivo. A viabilidade da interação do BIM e da filosofia Lean tem sido alcançada em escritórios de projetos e em canteiros de obra com auxílio de tecnologia. Por outro lado, a visão da engenharia do conhecimento está nos processos de criação, organização, formalização, compartilhamento, aplicação e refinamento de conhecimento. Tem-se por objetivo prospectar a partir dos conceitos de engenharia do conhecimento o quanto a interação do BIM com a Lean proporciona em termos de melhoria na tomada de decisão. A pesquisa consiste em uma revisão sistemática de literatura que aborda o uso do BIM e da Lean na fase de execução de construção em canteiro de obra. Com os resultados e análises realizadas, considera-se que as abordagens das práticas Lean e processos BIM permitem a gestão estratégica da informação, fato que pode orientar a implantação de procedimentos de engenharia do conhecimento que, uma vez bem ajustada, conduz a ganhos para a gestão do conhecimento.

1. Introdução

Algumas das causas para desperdício na indústria da construção civil são as inconsistências entre documentos de desenho, o fluxo restrito de informações em grandes entregas e os lapsos temporais após os pedidos de informação [1], sendo a fragmentação das fases durante o ciclo de vida do empreendimento uma consequência da caracteristica da cadeia produtiva, em que os agentes envolvidos trabalham de forma segregada [2].

Para melhorar os processos de trabalho de muitos atores do processo construtivo e acrescentar a possibilidade de modelar o ciclo de vida de uma edificação, tem-se utilizado a Modelagem da Informação da Construção (em inglês, *Building Information Modeling* – BIM)[1]. O BIM se caracteriza pelo trabalho colaborativo entre os interessados durante o processo relacionado à construção do produto edificação e pelas relações paramétricas que permitem que o modelo tenha as informações interligadas. Com auxílio da tecnologia ganha-se qualidade no processo de projeto, ao longo de todo o ciclo de vida do produto, tendo uma melhoria no produto final, dentre os beneficios destacam-se: visualização antecipada e mais precisa de um projeto; detecção de interferências; colaboração antecipada entre múltiplas disciplinas de projeto; melhor implementação e técnicas de *Lean Construction*; melhor gerenciamento e operação das edificações [3].

A utilização do BIM contribui muito para evitar as perdas pela maneira com a qual as informações são geradas, administradas e transmitidas [1]. A riqueza de informação nos modelos permite mudanças drásticas nos processos de projeto e construção [3]. Como no ciclo de vida do empreendimento ocorre um intenso fluxo de informação, para sua gestão há a necessidade de de integrar processos, tecnologias e pessoas em prol de objetivos estratégicos [4]. Com isso a informação passa a ser objeto de papel relevante na gestão ao visar obtenção de estratégias para vantagem competitiva [5].

A engenharia do conhecimento se concentra na implementação de sistemas de forma a fornecer um fluxo eficiente de informações [6], ou seja, apoia o processo de gerenciamento do conhecimento por meio de técnicas, ferramentas e métodos para o desenvolvimento de sistemas computacionais. Dessa forma aparece no contexto do processo de gerenciamento como uma solução para a complexidade gerir a informação e transformá-la em conhecimento [6]. A aplicação de uma série estruturada de tarefas, atividades ou procedimentos relacionados à forma de obtenção, de distribuição e de uso da informação e do conhecimento no ambiente em que estão inseridos pode ser definida como gerenciamento da informação [5].

A adoção dos processos em BIM possibilita o fornecimento de insumos necessários para orquestração de uma intensa pluralidade e quantidade elevada de informações, fato que evidencia o potencial para uma transformação dos processos de projeto e construção, pois um dos motivos para a existência de replanejamentos e excesso de custos de acordo com Matthews *et al* [7] é o retrabalho e a fraca produtividade advindas da prestação ineficaz de informações durante a construção.

A falha em atingir as metas de custo e cronograma são entendidas como perdas de valor [8]. O autor fez uma adaptação do conceito da *Lean Production* para a indústria da construção, a partir do sistema Toyota de produção estabelecendo onze princípios que guiam o estudo do sistema de produção a fim de minimizar o desperdício de materiais, tempo e esforço para gerar o máximo valor agregado, com isso apresentou um novo paradigma de gestão da produção que pode ser conceituada em três aspectos complementares: (1) Transformação, (2) Fluxo e (3) Geração de Valor.

A viabilidade do relacionamento entre processos BIM e a filosofia *Lean* se tornarem devidamente compreendidas, e se essas áreas estiverem enraizadas na compreensão conceitual da teoria da produção, essas interações podem ser exploradas para melhorar continuamente processos de construção [9]. Para os autores ainda que a *Lean* e o BIM não dependam um do outro, todo o potencial de melhoria dos projetos de construção só pode ser alcançado quando a sua adoção é integrada. O processo de tomada de decisão de uma organização se apoiado por uma metodologia que propicia processos e ferramentas para fornecer estratégia, inteligência competitiva e planos – estará aplicando conceitos de engenharia do conhecimento [6]. Como pessoas diferentes analisam o mesmo objeto como dado, informação ou conhecimento a metodologia da engenharia do conhecimento possibilita a transição entre as três dimensões dependendo agora do histórico e da perspectiva da análise do sistema e não mais da pessoa [3].

Considerando as sinergias entre BIM e *Lean* Sacks *et al* [10] sugeriram utilizar tecnologia de mídia eletrônica para visualização do modelo BIM associado aos conceitos da filosofia *Lean*, pois no canteiro de obra, o problema da comunicação é gerado pelo erro na entrega das informações do produto aos trabalhadores. Dessa forma, evidencia-se que no BIM: tem valor a informação com qualidade, ela fluir entre as diferentes disciplinas, a cadeia de valor é interligada pelas diferentes camadas (nD), a informação deve ser gerada na quantidade necessária ao projeto (puxar) e a melhoria contínua é desejada para tomada de decisão, a partir do entendimento e aplicação dos princípios *Lean* no processo de geração de dados e informação de um sistema BIM [3].

Como resultado dessa facilitação no processo de gestão da informação dentro dos sistemas da organização será a eficiência no processo de tratamento das informações para extrair conhecimento estratégico, a partir da informação recuperada e processada pela engenharia do conhecimento para descobrir o conhecimento subjacente, como base para a tomada de decisões [6].

O gerenciamento da informação em si dificilmente é encontrado na indústria da construção, mesmo que ela envolva o uso de inúmeros sistemas computacionais e materiais, exigindo sinergismos entre diversas disciplinas e competências de diferentes áreas, pois a criação das informações está inserida em todas as fases do processo e é feita de forma segregada, sem um fluxo e gerenciamento bem definido. Com o objetivo de identificar a partir da revisão de literatura, este artigo se propõe a responder se a implantação dos modelos BIM para o gerenciamento da obra baseado

na filosofia Lean permite iniciar um processo para implantar a engenharia do conhecimento com base nos ganhos do fluxo e gerenciamento de informação.

2. Método

A abordagem da pesquisa é exploratória porque objetiva levantar informações sobre funcionalidades BIM e princípios *Lean* mais relevantes para aplicação em projetos de construção, a fim de identificar a possibilidade da implantação da engenharia do conhecimento a partir da revisão sistemática de literatura. Com isso a estratégia da pesquisa foi definida tendo em vista a necessidade de encontrar estudos da temática BIM com uso na fase de execução em canteiro de obras que também tratassem da filosofia Lean para a gestão da informação.

Para cumprir a estratégia traçada a pesquisa inicial foi realizada em 3 bases de dados, sendo *Scopus*, *Web of Science* e do Portal de Periódicos da Capes, buscando pelas variações variações dos termos "BIM" and "Lean construction" and "construction site" e que tenham sido publicados entre os anos de 2010 e 2020.

Na figura 1, o processo de definição para seleção dos artigos para leitura foi feito pelos seguintes passos: (1) pesquisa inicial, (2) leitura de títulos e exclusão de títulos não pertinentes ao tema, (3) remoção de artigos duplicados, (4) eliminação de artigos a partir da leitura dos resumos, (5) eliminação de itens a partir da leitura de textos completos e, por fim, a análise dos artigos selecionados.

BASE DE DADOS	BUSCA GERAL PARA OS ANOS ENTRE 2010-2020		SEM ACESSO AO ARTIGO	TOTAL DE CADA BASE	EXCLUSÃO DE ARTIGOS DUPLICADOS	EXCLUSÃO PELA LEITURA DO RESUMO	EXCLUSÃO PELA LEITURA COMPLETA	
CAPES	15	7	0	7		19	4	
SCORPUS	74	49	7	42	13			
WEB OF SCIENCE	32	19	11	8				
Total	121	75	18	57	44	25	21	

Figura 1 Filtros.

Na segunda etapa aplicou-se o primeiro filtro que consistiu na leitura dos títulos para selecionar os artigos com potencial relevância para a questão de pesquisa deste estudo. Na terceira etapa o segundo filtro foi aplicado para eliminar os artigos duplicados. Em sequência na quarta etapa foi realizada a leitura dos resumos como terceiro filtro para selecionar os artigos que realmente continham informações relevantes para a discussão do tema da pesquisa.

Na quinta etapa foi realizada uma análise detalhada dos textos com o objetivo de identificar conteúdos relevantes no contexto de planejamento e gerenciamento do canteiro de obra envolvendo as práticas Lean e o uso do BIM para melhorar a eficiência do fluxo de informação para alcançar um nível estratégico, não envolvendo a logística do canteiro de obra, que é um assunto que apareceu com frequência durante a pesquisa.

Como primeiro passo no processo de análise foram observadas as palavras chave e a tipologia dos artigos selecionados. Dentre os 21 artigos selecionados notou-se uma

variedade de palavras chaves, ao total foram 63 diferentes palavras ou variações de palavras. As que tiveram maiores repetições foram BIM/Building Information Modeling com 20 vezes e Lean/Lean Construction/Lean Construction Management/LCM foram 16 vezes, enquanto que Visual Management apareceu quatro vezes. Para a variação de termos Information/Information Integration/Information Management também foram quatro vezes, seguido por Last Planner System com três vezes. Com duas repetições foram as palavras chave Process visualization, Information systems e Field trials. Todas as outras 55 apareceram apenas uma vez.

Para análise da tipologia os artigos foram divididos em dois grupos sendo: os estudos de caso em que aplicaram uma ferramenta para abordar as duas práticas em conjunto, e teórico conceitual em que tratam da possibilidade de se criar uma ferramenta ou utilização de recursos e sistemas de TI para uma melhor integração das ferramentas. Dos 21 artigos selecionados sete foram enquadrados como teórico conceitual e quatorze estudos de caso.

3. Resultados

Os resultados serão analisados conforme a separação da tipologia feita na primeira análise.

3.1. Teórico conceitual

Dos sete artigos enquadrados nessa tipologia, dois desenvolveram ferramentas de gerenciamento – KanBIM e VisiLean – a diferença das ferramentas consiste no foco dos sistemas. O KanBIM foca no controle do fluxo de trabalho, sistema habilitado para BIM para apoiar o planejamento da produção e o controle diário da produção nos canteiros de obras [10], enquanto o foco do VisiLean é no planejamento e controle da produção, sistema de gerenciamento de produção enxuto que usa o BIM como plataforma visual e permite a programação do fluxo de extração no canteiro de obras [11].

A partir da proposição de uma combinação para comunicação de um aplicativo de gerenciamento de produção com mensagens Quantum Lifecycle Management (QLM) [12]. Os autores explicam que o sistema interpretará automaticamente a imagem e identificará o status apropriado da tarefa e com cada atualização no status da tarefa, a infraestrutura de comunicação (com base nos padrões de mensagens QLM) atualizará o sistema de gerenciamento de produção.

Dave et al [13] propõem um quadro de comunicação de trabalho que possibilite alavancar a comunicação sistema-sistema, sistema-humano e sistema humano. A ideia é automatizar total ou parcialmente várias funções de comunicação em toda a cadeia de suprimentos. No ciclo de vida do projeto de construção as interfaces da internet das coisas são padronizadas, em que particularmente o mecanismo de assinatura Open-Messaging Interface (O-MI) e suas variantes. Estes são uma oportunidade de manter a consistência do fluxo de informações nos sistemas de gerenciamento da

Lean Construction em relação aos eventos reais que ocorrem no campo e o progresso real da tarefa.

Para explorar as conexões entre gerenciamento visual em *Lean Construction* e sistemas de tecnologia da informação (TI) emergentes. Tezel e Aziz [14] identificam oportunidades nas quais os sistemas de TI emergentes adicionam os recursos de reconhecimento de contexto, mobilidade, dinamismo e feedback instantâneo aos sistemas, ferramentas e práticas de *Lean Construction* convencionais do gerenciamento visual.

O desenvolvimento de um aplicativo baseado em BIM e realidade aumentada (AR) combinado com práticas de *Lean Construction*, apresenta uma solução capaz de detectar desvios de agendamento visualizando o progresso da construção em realidade aumentada e fornecer dados diários de progresso e desempenho das obras, bem como informações/documentos específicos do contexto sobre tarefas agendadas [15].

Enquanto que Reinbold *et al* [16] preconizam a integração de dados de posicionamento interno coletados automaticamente de recursos de construção com modelos BIM como ferramenta de gerenciamento visual para aumentar a conscientização situacional em projetos de construção.

A tabela 1 associa os artigos citados aos principios Lean a que estão relacionados.

Autores	Valor	Fluxo de valor	Cadeia de valor	Puxar	Melhoria contínua
Sacks et al [10]			Χ		
Dave e Koskela [11]		Χ			
Dave <i>et al</i> [12]	Х				
Dave et al [13]				Χ	
Tezel e Aziz [14]	Х				
Ratajczak et al [15]					Χ
Reinbold et al [16]		Χ			

Tabela 1Artigos selecionados com enfoque teórico-conceitual – BIM x LEAN.

Os artigos selecionados destacam de diferentes maneiras o potencial sinérgico entre Bim e *Lean* voltados para a fase de construção. Os artigos também servem como base para concretizar estas iterações em estudos de caso.

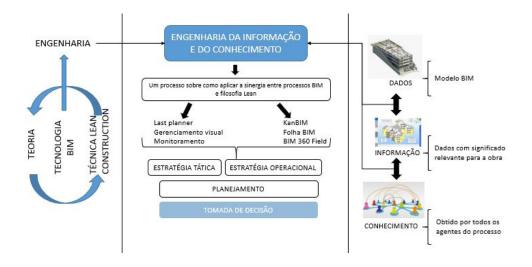
3.2. Estudos de caso

Para analisar as funcionalidades BIM e os princípios *Lean* utilizados em cada estudo, bem como o entendimento necessário dos gestores das interações positivas na prática o quadro 1 sistematiza quais práticas BIM foram utilizadas baseadas nos aspectos de interesse de concentração do foco de cada pesquisa e com isso quais principios *Lean* foram alcançados.

Quadro 1 Artigos selecionados e práticas abordadas.

Г		LEAN								
PRÁTICAS UTILIZADAS		Reduz a variabilidade	Reduz os tempos de ciclo	Reduz desperdicios	Aumenta a flexibilidade	Utiliza sistema puxado	Padronização	Melhoria continua	Gerenciamento visual	Geração de valor
	Visualização da forma	[20][26] [27][28]			- 100 - 1					[19][20] [26][27] [28]
B N	Análise preditiva de desempenho	[17][18] [27][29]	[17][18] [23][25] [27]						[25]	[18][7] [27][29]
	Manutenção da integridade da informação	[17][18] [20][24] [26][28] [29]	[17][18] [23][24] [28]	112011221						[18][7] [26][28] [29]
	Geração automatizada de documentos		[19][21]					[19][21] [29]		
	Colaboração em design e construção		[17][18] [19][23] [24][25] [28]	1117111211	[22]	[17][18] [19][21] [7] [26][29]				[18][19] [21][7] [26][28] [29]
	Geração automatizada de tarefas de construção	[17][18]	[17][18] [19]				[17][19]			[18]
	Visualizações do status do processo		[17][18] [19]			[17][18] [19][29]			[17][18] [19][7] [27][29]	[18][19] [7] [27][29]
	Comunicação de informações (online/offline)					[17][18] [29]	[17][19] [20][23] [27][29]	[19][7] [22][23] [24][26]	[17][18] [19] [7] [22][23] [24][26] [27][28] [29]	[18][7] [27][28] [29]

A partir da sumarização dos resultados e das práticas utilizadas identificadas, no Quadro 1, traz a reflexão que as diferentes forma das práticas Lean x BIM se relacionarem é que propiciam a Engenharia do Conhecimento. Observa-se o elevado grau de sobreposição das aplicações e ficam evidentes melhorias na comunicação, tomada de decisão, fluxo de informação, integração dos dados, redução de desperdícios e fluxo de trabalho o que resulta no aumento de valor agregado. Assim como que conhecimento absorver a partir do exemplo: a redução da variabilidade alcançada pela possibilidade de visualização do modelo, análise de alternativas de projeto, detecção de interferências, redução de retrabalho, entre outras.


Dessa forma o desenvolvimento de Tecnologias da Informação e Comunicação aderentes a sinergia propiciam a geração de conhecimento explícito que poderá apoiar as tomadas de decisões futuras adjacentes, que é entendido como engenharia do conhecimento. Esta perspectiva esta alinhada aos conceitos e práticas discutidos e apoiados em sistemas criados para armazenar as boas práticas de gestão da informação.

4. Discussão

No cenário tradicional do canteiro de obras em que ocorrem perdas resultantes da falta de informações, integração e colaboração com a equipe de projeto, somadas à visão tradicional do processo, o conhecimento esta fragmentado e é adquirido de diferentes fontes, em que cada peça fornece informações limitadas e não o quadro completo. Com isso não se consegue obter e processar esse conhecimento fragmentado, impossibilitando a engenharia do conhecimento.

Porém ao expor a viabilidade do relacionamento entre BIM e *Lean Construction* na análise dos artigos sugere-se que a adoção conjunta seja classificada como um processo da engenharia do conhecimento. A classificação é possivel pois o resultado advindo da revisão de literatura mostra que as ferramentas propostas fornecem um meio eficiente para o fluxo de informação, e as informações podem ser usadas para avaliar e visualizar os fluxos de projetos de construção, melhorando o processo de tomada de decisão nos níveis operacional, tático e estratégico.

Dessa forma o ambiente de gestão em canteiro de obras consegue alcançar o nível de tomada de decisão e ser considerada engenharia do conhecimento, em que a informação é alimentada pela própria engenharia (leia criação) que envolve o ciclo de teoria, técnica e tecnologia e pela informação advinda de dados e conhecimento pessoal de cada indivíduo para que transformem os dados em informação, conforme exibido na figura 2. Sendo este ciclo sustentado pelo entendimento de que a engenharia da informação e do conhecimento é aplicada a processos gerenciais e a utilização de ferramentas para tomadas de decisão baseadas em um planejamento estratégico e de inteligência competitiva no ambiente empresarial [6].

Figura 2Releitura engenharia da informação e do conhecimento.

A evolução para engenharia do conhecimento requer a sistematização dos saberes das equipes a partir das lições aprendidas e transmitidas para outros empreendimentos, de modo, a evitar a repetição dos erros e aumentar a assertividade das decisões gerenciais [3]. Com isso o conhecimento é apresentado e construido à medida que o sistema responde às necessidades do usuário e permite a compreensão

conectada ao tópico, fazendo com que a engenharia do conhecimento seja entendida como a aquisição, formalização e refinamento do conhecimento.

Assim qualquer organização/projeto na indústria da construção em uma jornada *Lean* deve considerar o uso do BIM para melhorar seus resultados e ao mesmo tempo empresas utilizando BIM devem garantir que seu processo de adoção está contribuindo ao máximo para deixar seus processos *Lean* [9]. A partir disso os processos tradicionais são alterados para se enquadrarem nos processos novos que foram desenvolvidos baseados nos princípios da *Lean Construction* que diminuem desperdícios e aumentam a geração de valor [3].

Ainda que este cenário colabore para a geração de novos mecanismos de comunicação e compartilhamento de informações os ganhos proporcionados pela utilização do BIM e da *Lean* em conjunto somente são possíveis quando há uma estrutura em que pessoas, processos e sistemas de informação se apoiam, assim como na engenharia do conhecimento. Logo, é preciso a colaboração e adoção das novas práticas por todos os envolvidos no processo para que se tenha uma implementação bem-sucedida das duas abordagens, para alcançar o nível da engenharia do conhecimento. Essa colaboração se torna um ponto de atenção ja que os artigos estudados relatam como dificuldade encontrada a resistência à mudança pelos profissionais nos canteiros de obras.

5. Conclusão

Para facilitar os processos de criação, organização, formalização, compartilhamento, aplicação e refinamento de conhecimento sugere-se que integração entre a *Lean Construction* e o BIM seja implementada a através de uma plataforma, num passo a passo contínuo, para que em seguida essa se estabeleça como uma estratégia de implantação da engenharia do conhecimento. Utiliza-se a abordagem computacional para transformar conteúdo informacional em conhecimento estruturado, obtendo assim sistemas robustos que armazenam as informações e otimizam a tomada de decisão do gestor principal. Esta afirmação é sustentada pelo alinhamento bem-sucedido entre a *Lean Construction* e o BIM que contribuem para a melhoria do gerenciamento sendo facilitado por uma plataforma para a troca de informações relacionadas a produtos, processos e recursos, promovendo a cooperação e o fluxo de informação entre os envolvidos verificados no rol de artigos selecionados.

Referências

[1] Sacks, R.; Eastman, C.; Lee, G.; Teicholz, P. Manual de BIM: um guia de modelagem da informação da construção para arquitetos, engenheiros, gerentes, construtores e incorporadores. 3ed. Tradução de Ayres Filho, C. Bookman, Porto Alegre, 2021.

- [2] Rezek, T. H..; Freitas, M. do C. D.; Scheer, S. Adoção de BIM e Lean Construction: um processo para implantação da Engenharia do Conhecimento. In: Simpósio Brasileiro de Tecnologia da Informação e Comunicação na Construção, 3., 2021. Anais [...]. Porto Alegre: ANTAC, 2021, pp. 1-10. DOI: 10.46421/sbtic.v3i00.560. Disponível em: https://eventos.antac.org.br/index.php/sbtic/article/view/560. Acesso em: 19 dez. 2021.
- [3] Eastman, C.; Teicholz, P.; Sacks, R.; Liston, K. Manual de BIM: um guia de modelagem da informação da construção para arquitetos, engenheiros, gerentes, construtores e incorporadores. 1ed. Tradução de Ayres Filho, C. Bookman, Porto Alegre, 2014.
- [4] Nascimento, D. L. M.; Sotelino, E. D.; Caiado, R. G. G.; Ivson, P.; Faria, P. S. Sinergia entre Principios do Lean Thinking e Funcionalidade de BIM na Interdisciplinaridade de Gestão em Plantas Industriais. Journal of lean systems, v. 2, n. 4, pp. 83-109, 2017.
- [5] Teixeira, A. V.; Freitas, M. C. D.; Laurindo, A. M. Engineering Information: Conceptual Elements Related Information Management and Information Systems. EDULEARN, 14., 2014. Proceedings, pp. 6909-6915.
- [6] Freitas, M. C. D; Odorczyk, R. S.; Mendes Jr. R.; Frederico, G. F.; Córdova, F.; Duran, C. Theoretical aspects of the information and knowledge engineering. 2016, Proceedings of IEEE-ICCCC2016, 6th International Conference on Computers Communications and Control, 2016.
- [7] Matthews, J.; Love, P. E.d.; Heinemann, S.; Chandler, R.; Rumsey, C.; Olatunj, O. Real time progress management: Reengineering processes for cloud-based BIM in construction. Automation in Construction, v.58, pp. 38-47, jul. 2015. DOI: http://dx.doi.org/10.1016/j.autcon.2015.07.004
- [8] Koskela, L. Application of the New Production Philosophy to Construction Technical Report, 1992.
- [9] Sacks, R., Koskela, L., Dave, B. A., Owen, R. (2010). Interaction of lean and building information modeling in construction. Journal of construction engineering and management, 136(9), 968-980.
- [10] Sacks, R.; Radosavljevic, M.; Barak, R. Requirements for Building Information Modeling based Lean Production Management Systems for construction. Automation in Construction, v. 19, n. 5, pp. 641-655, 2010.
- [11] Dave, B.; Koskela, L. J. VisiLean: Designing a production management system with lean and BIM. 19nd Annual Conference of the International Group for Lean Construction: Understanding and Improving Project Based Production, IGLC 2011 p., 2011.

- [12] Dave, B.; Kubler, S.; Främling, K.; Koskela, L. Addressing information flow in lean production management and control in construction. 22nd Annual Conference of the International Group for Lean Construction: Understanding and Improving Project Based Production, IGLC 2014, pp. 581-592, 2014.
- [13] Dave, B.; Kubler, S.; Framling, K.; Koskela, L. Opportunities for enhanced lean construction management using Internet of Things standards. Automation in Construction, v.61, pp. 86-97, 2016.
- [14] Tezel, A.; Aziz, Z. From conventional to it based visual management: A conceptual discussion for lean construction. Journal of Information Technology in Construction, v. 22, pp. 220-246, 2017.
- [15] Ratajczak, J.; Riedl, M.; Matt, D. T. BIM-based and AR application combined with location-based management system for the improvement of the construction performance. Buildings, v. 9, n. 5, 2019.
- [16] Reinbold, A.; Seppänen, O.; Peltokorpi, A.; Singh, V.; Dror, E. Integrating indoor positioning systems and BIM to improve situational awareness. 27th Annual Conference of the International Group for Lean Construction, IGLC 2019, pp. 1141-1150, 2019.
- [17] Sacks, R.; Barak, R.; Belaciano, B.; Gurevich, U.; Pikas, E. Field tests of the Kan-BIM lean production management system. Proceedings of the 19th Annual Conference of the International Group for Lean Construction 2011, IGLC 2011, pp. 465-476, 2011.
- [18] Sacks, R.; Barak, R.; Belaciano, B.; Gurevich, U.; Pikas, E. KanBIM workflow management system: Prototype implementation and field testing. Lean Construction Journal, v. 2013, n. 2012, pp. 19-35, 2013.
- [19] Gurevich, U.; Sacks, R. Examination of the effects of a KanBIM production control system on subcontractors' task selections in interior works. Automation in Construction, v. 37, pp. 81-87, 2014. Elsevier B.V. Disponível em: http://dx.doi.org/10.1016/j.autcon.2013.10.003.
- [20] Laine, E.; Alhava, O.; Kiviniemi, A. Improving Built-In Quality by BIM Based Visual Management Building Information Modeling (BIM) and Lean. IGLC 2014 Proceedings of the 22th Annual Conference of the International Group for Lean Construction, pp. 945-956, 2014.
- [21] Mahalingam, A.; Yadav, A. K.; Varaprasad, J. Investigating the role of lean practices in enabling BIM adoption: Evidence from two Indian cases. Journal of Construction Engineering and Management (2015) 141(7), v. 141, n. 7, pp. 1-11, 2015.
- [22] Ibarra, J. V.; Formoso, C. T.; Lima, C.; Mourão, A.; Saggin, A. Model for integrated production and quality control: Implementation and testing using commercial

- software applications. IGLC 2016 Proceedings of the 24th Annual Conference of the International Group for Lean Construction, pp. 73-82, 2016.
- [23] Giovanny, O.; Alberto, S. J.; Yerson, G. H. P. BrIM 5D models and Lean Construction for planning work activities in reinforced concrete bridges Modelos BrIM 5D y Lean Construction para planificar actividades de. Revista Faculdad de Ingeniaría, v. 26, n. 46, pp. 39-50, 2017
- [24] Matta, G.; Herrera, R. F.; Baladrón, C.; Giménez, Z.; Alarcón, L. F. Using BIM-Based sheets as a visual management tool for on-site instructions: A case study. IGLC 2018 Proceedings of the 26th Annual Conference of the International Group for Lean Construction: Evolving Lean Construction Towards Mature Production Management Across Cultures and Frontiers, v. 1, pp. 144-154, 2018.
- [25] Vrijhoef, R.; Dijkstra, J. T.; Koutamanis, A. Modelling and simulating time use of site workers with 4d BIM. IGLC 2018 Proceedings of the 26th Annual Conference of the International Group for Lean Construction: Evolving Lean Construction Towards Mature Production Management Across Cultures and Frontiers, v. 1, pp. 155-165, 2018.
- [26] Koseoglu, O.; Nurtan-Gunes, E. T. Mobile BIM implementation and lean interaction on construction site: A case study of a complex airport project. Engineering, Construction and Architectural Management, v. 25, n. 10, pp. 1298-1321, 2018.
- [27] Álvares, J. S.; Costa, D. B. Construction progress monitoring using unmanned aerial system and 4D BIM. Proceedings of the 27th Annual Conference of the International Group for Lean Construction, IGLC 2019, pp. 1445-1456, 2019.
- [28] Demir, S.; Von Heyl, J.; Demir, S. Digitizing Lean Construction With Building Information Modeling. Proceedings of the 27th Annual Conference of the International Group for Lean Construction (IGLC), pp. 843-852, 2019. DOI: http://iglc.net/Papers/Details/1725.
- [29] Boton, C.; Pitti, Y.; Forgues, D.; Iordanova, I. Investigating the challenges related to combining BIM and Last Planner System on construction sites. Frontiers of Engineering Management, 2020.